On Homogenization of Almost Periodic Nonlinear Parabolic Operators
نویسنده
چکیده
In the present paper we prove an individual homogenization result for a class of almost periodic nonlinear parabolic operators. AMS Subject Classification (2000): 35B27, 35K55
منابع مشابه
Individual Homogenization of Nonlinear Parabolic Operators
In this paper, we prove an individual homogenization result for a class of almost periodic nonlinear parabolic operators. The spatial and temporal heterogeneities are almost periodic functions in the sense of Besicovitch. The latter allows discontinuities and suitable for many applications. First, we derive stability and comparison estimates for sequences of G-convergent nonlinear parabolic ope...
متن کاملHomogenization of Nonlinear Random Parabolic Operators
We consider the homogenization of nonlinear random parabolic operators. Depending on the ratio between time and spatial scales different homogenization regimes are studied and the homogenization procedure is carried out. The parameter dependent auxiliary problem is investigated and used in the construction of the homogenized operator.
متن کاملAuxiliary Sdes for Homogenization of Quasilinear Pdes with Periodic Coefficients
We study the homogenization property of systems of quasi-linear PDEs of parabolic type with periodic coefficients, highly oscillating drift and highly oscillating nonlinear term. To this end, we propose a probabilistic approach based on the theory of forward–backward stochastic differential equations and introduce the new concept of " auxiliary SDEs. " 1. Introduction and assumptions.
متن کاملHomogenization of random parabolic operators. Diffusion approximation
The paper deals with homogenization of divergence form second order parabolic operators whose coefficients are periodic in spatial variables and random stationary in time. Under proper mixing assumptions, we study the limit behaviour of the normalized difference between solutions of the original and the homogenized problems. The asymptotic behaviour of this difference depends crucially on the r...
متن کاملTime Averaging for Random Nonlinear Abstract Parabolic Equations
It is well known that the averaging principle is a powerful tool of investigation of ordinary differential equations, containing high frequency time oscillations, and a vast work was done in this direction (cf. [1]). This principle was extended to many other problems, like ordinary differential equations in Banach spaces, delayed differential equations, and so forth (for the simplest result of ...
متن کامل